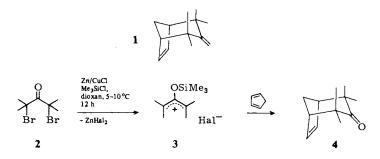
Chem. Ber. 117, 3325-3329 (1984)

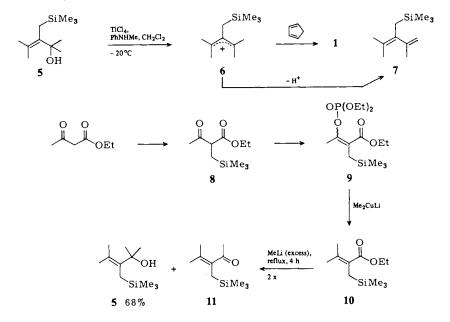
2,2,4,4-Tetramethyl-3-methylenebicyclo[3.2.1]oct-6-ene

H. M. R. Hoffmann*, Anette Weber, and Raymond J. Giguere¹⁾


Institut für Organische Chemie, Universität Hannover, Schneiderberg 1 B, D-3000 Hannover

Received February 6, 1984

2,2,4,4-Tetramethyi-3-methylenbicyclo[3.2.1]oct-6-en


Die sterisch anspruchsvolle Titelverbindung 1 wurde in einer Eintopfreaktion aus Cyclopentadien und 2,4-Dimethyl-3-[(trimethylsilyl)methyl]-3-penten-2-ol (5) in Gegenwart von Titantetrachlorid/N-Methylanilin hergestellt. 2,2,4,4-Tetramethylbicyclo[3.2.1]oct-6-en-3-on (4) wurde vereinfacht im 15-g-Maßstab dargestellt.

In context with recent efforts towards the synthesis of 9,10-didehydronorzizaene^{2a)} and 9,10-didehydrozizaene^{2b)} we required the title bicyclic 1 as a model compound. I has a plane of symmetry – which simplifies NMR spectra – and also has aesthetic appeal. A simple precursor of 1 appeared to be bicyclic ketone 4³⁾, which, as we now show, can be obtained most conveniently from α, α' -dibromo ketone 2, zinc-copper couple and cyclopentadiene in the presence of chlorotrimethylsilane⁴⁾. Under these conditions 4 has been isolated in 50% yield, and there is no problem in starting or scaling up the organometallic reaction, which may otherwise be sluggish. The key intermediate in this cycloaddition is siloxyallyl cation 3⁵⁾. Unfortunately, various attempts to methylenate 4 to give 1 failed⁶⁾ and we have learnt from Professor *Krief* that he has been unable to isopropylidenate ketone 4, using organoselenium chemistry⁷⁾.

As an alternative approach to 1 we activated allylic alcohol 5 in the presence of cyclopentadiene. At the outset one could have serious doubts whether 1 would be formed at all by this approach. Since cation 6 is more crowded than cation 3, the nonplanar conformation of 6 should be preferred further. However, the nonplanar conformation is expected to suffer ready elimination^{5,8)} to 7, because unlike 3 cation 6 lacks a nucleophilic group Y at the central allylic carbon $(Y = CH_2SiMe_3 in 6 vs. OSiMe_3 in 3)$; such a nucleophilic group helps to disperse positive charge and to suppress elimination by 1,3-interaction with an allylic terminus in the nonplanar conformation⁵⁾. In the event, the functionalized permethylated allylic alcohol 5 had first to be pre-

© Verlag Chemie GmbH, D-6940 Weinheim, 1984 0009 – 2940/84/1111 – 3325 \$ 02.50/0 pared. After trying several plausible approaches without success we obtained 5 using the enol phosphorylation of functionalized acetoacetic ester $(8 \rightarrow 9)$ and reaction with dimethylcopperlithium $(9 \rightarrow 10)^{9)}$. This sequence seems to work well for constructing crowded tetrasubstituted olefins such as 10. Methylation of the substituted acrylic ester 10 to give 5 required forcing conditions and even after repeating the methylation with fresh methyllithium some ketone 11 remained (5:11 = 9:1).

Previously, we had activated allylic alcohols related to 5 via trifluoroacetylation and treatment with zinc halides⁸⁾. In the present case, a still simpler procedure worked, i.e. ionization of 5 with TiCl₄ in the presence of *N*-methylaniline at $-20 \,^{\circ}C^{10}$. Under these conditions conjugated diene 7 was formed in only 12% yield and the desired bicycle 1 in a respectable 38% yield. The structure of 1 was established spectroscopically, especially by comparison with bicyclic ketone 4.

Conclusions: Tetrasubstituted olefins 5, 10, and 11, which all contain further functionality, are new and useful terpenoid building blocks. The direct electrophilic activation of alcohol 5 without previous esterification, i.e. by treatment with modified titanium tetrachloride, simplifies the desired cycloaddition. Finally, the preparation of 1 with its two crowded quaternary centres separated by the exo-methylene double bond demonstrates the considerable driving force for the formation of [3.2.1]bicyclic systems from cyclopentadiene and allylic cations, which contain a donor at the central carbon⁵, even in the presence of adverse steric effects.

We thank Ulrike Bültel and Kunibert Giesel for experimental contributions and the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of this work.

Experimental Part

Improved Procedure for the Preparation of 2,2,4,4-Tetramethylbicyclo[3.2.1]oct-6-en-3-one (4): The mixture of commercial zinc dust (26.1g, 0.4 mol) and copper(I) chloride (3.96g, 40 mmol) in freshly distilled dioxan (80 ml) is cooled to 0° C (ice bath) with stirring and a solution of freshly

Chem. Ber. 117 (1984)

distilled cyclopentadiene (13.2 g, 200 mmol), freshly distilled 2,4-dibromo-2,4-dimethyl-3-pentanone 2 (36.1 g, 133 mmol) and chlorotrimethylsilane (17.3 g, 20.2 ml, 160 mmol) in dioxan (45 ml) is added dropwise over 2 h. Ice cooling is maintained for 5 h, and then the reaction mixture is allowed to slowly reach room temperature, while being stirred overnight. The mixture is suction filtered through a dichloromethane moistened celite 545 pad contained in a large sintered glass funnel and washed well with dichloromethane. The filtrate is washed with water, saturated NH₄Cl solution, water, saturated NaCl solution and dried (K₂CO₃). Removal of the solvent on a rotary evaporator gives a yellow oil. Fractional distillation (short path head, 20 cm Vigreux) of the crude product furnishes 4³¹ (16.7 g, 55%), b. p. 45 – 50°C/ca. 1 Torr, as a low melting solid (m. p. ca. 25°C). Alternatively, flash chromatography (substance/silica gel = 1/20, ether/light petroleum = 1/10) gives a yellow oil which is recrystallized from pentane. – ¹³C NMR (CDCl₃, Me₄Si): δ = 221.0 (s, C-3), 136.5 (d, C-6, -7), 50.0 (s, C-2, -4), 49.9 (d, C-1, -5), 35.2 (t, C-8), 28.3 (q, 2 CH₃), 25.2 (q, 2 CH₃).

2,4-Dimethyl-3-[(trimethylsilyl)methyl]-3-penten-2-ol (5)

a) Ethyl 3-Oxo-2-[(trimethylsilyl)methyl]butanoate (8): Ethyl acetoacetate (13 g, 0.10 mol) in absol. dimethylformamide (DMF) (25 ml) was dropped slowly into a cooled (water bath) suspension of sodium hydride (3.85 g, 75%; 0.12 mol) in absol. DMF (25 ml). After complete addition a solution of (iodomethyl)trimethylsilane (24.6 g, 116 mmol) in absol. DMF (20 ml) was added slowly and the mixture was heated for 4 h to 80 °C. After cooling down a dilute aqueous solution (150 ml) of NH₄Cl was added carefully, and the mixture was extracted with pentane (3 × 100 ml). The organic phase was washed with a saturated solution of NaCl and dried (MgSO₄). The solvent was removed to leave a residue which was fractionated over a Vigreux column to give 8 (15 g, 70%), b. p. 111 – 113 °C. – IR (CCl₄): 2980 (m), 2958 (m), 2900 (m), 1742 (vs), 1717 (vs), 1250 (vs), 1238 (vs), 1188 (s), 1135 (s), 850 (vs), cm⁻¹. – 90 MHz ¹H NMR (CDCl₃, standard TMS added afterwards): $\delta = -0.01$ (s, 9H), 1.08 (ABX system, AB part, 2H, CH₂Si), 1.14 (t, J = 7 Hz, 3H, CH₂CH₃). – MS (70 eV, room temperature): m/e = 216 (M⁺, 2%), 201 (21), 188 (10), 173 (20), 155 (13), 143 (23), 129 (22), 127 (14), 113 (12), 103 (12), 97 (11), 75 (100), 73 (84), 60 (39), 55 (18), 53 (27).

b) Ethyl-3-(Diethoxyphosphinyloxy)-2-[(trimethylsilyl)methyl]-2-butenoate (9): Silylated ester **8** (5.4 g, 25 mmol) in absol. ether (20 ml) was stirred at 0°C into a suspension of sodium hydride (0.88 g, 75%; 27 mmol) in absol. ether (30 ml) under argon. After the mixture had reached room temperature (15 min) diethyl chlorophosphate (4.75 g, 27.5 mmol) was added and the resulting mixture was stirred for 2 h at room temperature. After addition of a dilute solution of aqueous NH₄Cl the organic phase was washed with aqueous NaHCO₃ and dried (Na₂SO₄). Removal of the solvent in vacuo yielded spectroscopically pure **9** (8.45 g, 96%) as a light yellow oil. – IR (CCl₄): 2980 (m), 2960 (m), 2930 (m), 2910 (m), 1722 (vs), 1650 (w), 1300 (vs), 1280 (vs), 1250 (m), 1200 (m), 1165 (s), 1135 (m), 1035 (vs), 972 (vs), 850 (vs), cm⁻¹. – 90 MHz ¹H NMR (CDCl₃, benzene standard): $\delta = -0.03$ (s, 9H), 1.22 (t, J = 7 Hz, 3H, CO₂CH₂CH₃), 1.24, 1.26 [2 × t, J = 7 Hz, 6H), P(OCH₂CH₃)₂], 1.62 (m, 2H, CH₂Si), 1.98 [m, 3H, CH₃C(OP<)], 4.06 (q, J = 7 Hz, 2H, CO₂CH₂CH₃), 4.12, 4.15 [2 × q, J = 7 Hz, 4H, P(OCH₂CH₃)]. – MS (70 eV, room temperature): m/e = 352 (M⁺, 3%), 307 (12), 235 (12), 227 (15), 199 (38), 183 (27), 178 (13), 171 (25), 155 (100), 154 (18), 153 (12), 150 (22), 127 (19), 126 (17), 111 (13), 99 (37), 97 (17), 75 (58), 73 (87), 55 (14).

c) Ethyl 3-Methyl-2-[(trimethylsilyl)methyl]-2-butenoate (10): Methyllithium (40 mmol, 25 ml of a 1.6 M solution in ether) was added to a suspension of copper(1) iodide (3.81 g, 20 mmol) in absol. ether at 0°C. The resulting dimethylcopperlithium was used immediately: it was cooled to

Chem. Ber. 117 (1984)

-78 °C and a solution of enol phosphate 9 (3.52 g, 10 mmol) in absol. ether (10 ml) was added slowly. After stirring at -78 °C for 4 h a saturated solution of NH₄Cl was added and the product was extracted several times with ether. The combined organic phase was washed with a solution made up from a saturated solution of NaCl and conc. NH₃ and then with a saturated solution of NaCl alone. The solvent was dried (Na₂SO₄) and removed in vacuo to leave a light yellow oil, which was distilled in a Kugelrohr apparatus to give 10 (1.85 g, 87%), b. p. 90 °C/0.5 Torr. - 1R (CCl₄): 2980 (m), 2958 (m), 2930 (m), 1710 (vs), 1625 (m), 1295 (m), 1278 (s), 1248 (s), 1218 (m), 1152 (vs), 1120 (m), 1050 (vs), 850 (vs), cm⁻¹. -90 MHz ¹H NMR (CDCl₃, benzene standard): $\delta = -0.08$ (s, 9H), 1.20 (t, J = 7 Hz, 3H, CH₂CH₃). -1^{13} C NMR (CDCl₃): $\delta = 169.5$ (s, C-1), 137.2 (s, C-3), 125.1 (s, C-2), 59.6 (t, CH₂CH₃), 22.4 (q, CH₃), 22.3 (q, CH₃), 20.0 (t, CH₂Si), 14.0 (q, CH₂CH₃), -1.4 (q, SiMe₃). - MS (70 eV, room temperature): m/e = 214 (M⁺, 3%), 198 (39), 171 (26), 170 (10), 169 (17), 155 (12), 103 (11), 96 (31), 75 (71), 73 (100), 68 (48), 67 (39), 59 (11), 50 (27).

HRMS: C11 H22O2Si Calcd. 214.13891 Found 214.13872

2,4-Dimethyl-3-[(trimethylsilyl)methyl]-3-penten-2-ol (5): Silylated ester 10 (2.14 g, 10 mmol) in absol. ether (20 ml) was mixed with a 1.6 M solution (20 ml) of methyllithium (32 mmol) in ether under argon at room temperature and refluxed for 4 h. After addition of aqueous NH₄Cl the organic phase was separated and dried (Na₂SO₄). The solvent was removed to leave a mixture (65:35) of allylic alcohol 5 and ketone 11, which was again refluxed with methyllithium (10 ml, 16 mmol) for 4 h. Chromatography with aluminium oxide (activity III; eluant light petroleum/ ether = 9:1) gave 5 (1.35 g, 68%) and 11 (0.12 g). – IR (CCl₄): 3552 (m), 2940 (m), 2910 (m), 2850 (m), 1240 (s), 844 (vs), cm⁻¹. – 90 MHz ¹H NMR (CDCl₃, benzene standard) of 5: δ = -0.03 (s, 9H, SiMe₃), 1.32 [s, 6H, C(OH)(CH₃)₂], 1.35 (s, 1H, OH), 1.53 (s, 3H, Z-CH₃), 1.57 (s, 2H, CH₂), 1.80 (s, 3H, *E*-CH₃). – ¹³C NMR (CDCl₃): δ = 137.4 [s, C(CH₃)₂], 122.5 [s, $C = C(CH_3)_2$], 73.6 [s, C(OH)(CH₃)₂], 30.6 [q, C(OH)(CH₃)₂], 24.1 (q, CH₃), 22.6 (q, CH₃), 20.2 (t, CH₂), -0.06 [q, Si(CH₃)₃]. – MS (70 eV, room temperature): *m/e* = 200 (M⁺, 0%), 182 (10), 110 (21), 95 (42), 75 (26), 73 (100), 67 (10), 45 (11).

4-Methyl-3-[(trimethylsilyl)methyl]-3-penten-2-one (11): IR (CCl₄): 2940 (m), 2900 (m), 2840 (m), 1680 (vs), 1615 (m), 1240 (s), 868 (s), 848 (s), 830 (s), cm⁻¹. - 90 MHz ¹H NMR (CDCl₃, benzene standard): $\delta = -0.08$ (s, 9H), 1.59 (s, 3H, Z-CH₃), 1.67 (s, 2H, CH₂), 1.72 (s, 3H, E-CH₃), 2.14 (s, 3H, CH₃CO). $-^{13}$ C NMR (CDCl₃): $\delta = 206.4$ (s, C=O), 135.4 [s, C(CH₃)2], 131.9 [s, C = C(CH₃)2], 30.4 (q, CH₃CO), 22.5 (q, CH₃), 22.0 (q, CH₃), 20.4 (t, CH₂), -0.83 (q, SiMe₃). - MS (70 eV, room temperature): m/e = 184 (M⁺, 11%), 169 (82), 115 (12), 79 (12), 75 (50), 73 (100), 45 (15).

2,2,4,4-Tetramethyl-3-methylenebicyclo[3.2.1]oct-6-ene (1): A solution of titanium tetrachloride (5.6 ml of a 2 M solution in CH₂Cl₂, 11.3 mmol) in absol. CH₂Cl₂ (20 ml) was dropped into a solution of freshly distilled *N*-methylaniline (1.2 g, 11.3 mmol) in absol. CH₂Cl₂ (10 ml) at $-20 \,^{\circ}C^{10}$. The resulting red-brown solution was stirred for 15 min and a solution of 5 (1.5 g, 7.5 mmol) and cyclopentadiene (1.0 g, 15 mmol) in absol. CH₂Cl₂ (30 ml) was added dropwise at $-20 \,^{\circ}C$, the color changing to clay-brown. After a further 3 h at $-20 \,^{\circ}C$ the solution was treated with ether (200 ml) and washed with water (3 × 100 ml). The organic phase was dried (Na₂SO₄) and the solvent was removed in the cold at reduced pressure to give a yellow liquid containing 1 and 7 in a ratio of 2: 1 (GLC). Chromatography over silica gel (eluant pentane) gave 1 (500 mg, 38%) and diene 7 (170 mg, 12%). $- 1R (CCl_4) \text{ of } 1: 3060 (w), 2980 (s), 2910 (s), 2875 (m), 1622$ $(w), 1462 (m), 1380 (m), 1362 (m), 908 (m), 892 (m), cm⁻¹. <math>- 90 \text{ MHz}^{-1} \text{H NMR} (CDCl_3): \delta =$ 1.07 (s, 6H, 2 × α -CH₃), 1.25 (s, 6H, 2 × β -CH₃), 1.59 $- 1.79 (m; 1H, H_{anti})$, 2.02 - 2.29 (m,3H, 1-, 5-H, H_{syn}), 4.95 (s, 2H, CH₂=), 6.06 (br s, 2H, CH=CH). $- \frac{13}{C} \text{ NMR} (CDCl_3): \delta =$ 164.9 (s, C-3), 136.4 (d, C-6, -7), 111.4 (t, $CH_2 =$), 52.4 (d, C-1, -5), 40.0 (s, C-2, -4), 35.8 (t, C-8), 33.6 (q, 2 CH₃), 30.9 (q, 2 CH₃). - MS (70 eV, room temperature): $m/e = 176 (M^+, 9\%)$, 161 (14), 160 (72), 133 (59), 120 (63), 119 (95), 110 (29), 106 (34), 105 (100), 95 (70), 93 (40), 92 (56), 91 (74), 79 (34), 77 (42), 69 (76), 67 (44), 60 (45), 41 (46).

HRMS: C13H20 Calcd. 176.15650 Found 176.15650

2,4-Dimethyl-3-[(trimethylsilyl)methyl]-1,3-pentadiene (7): 90 MHz ¹H NMR (CDCl₃): $\delta = 0.00$ (s, 9H, SiMe₃), 1.60 (s, 5H, CH₃, CH₂Si), 1.68 (s, 3H, E-CH₃), 1.76 [t, J = 1.5 Hz, 3H, CH₃C(= CH₂)], 4.52 - 4.62 (m, 1H, C = CH), 4.84 - 4.93 (m, 1H, C = CH).

⁵⁾ Review: *H. M. R. Hoffmann*, Angew. Chem. **96**, 29 (1984); Angew. Chem., Int. Ed. Engl. **23**, 1 (1984).

- ⁷⁾ A. Kief, personal communication. Cf. D. Labor and A. Kief, J. Chem. Soc., Chem. Commun. 1982, 564.
- ⁸⁾ R. Henning and H. M. R. Hoffmann, Tetrahedron Lett. 23, 2305 (1982). Preparation of parent 2-[(trimethylsilyl)methyl]-2-propen-1-ol: B. M. Trost, D. M. T. Chan, and T. N. Nanninga, Org. Synth., checked procedure No. 2216.
- ⁹⁾ F. W. Sum and L. Weiler, Can. J. Chem. 57, 1431 (1979); corrigenda ibid. 57, 2895 (1979).
- ¹⁰⁾ T. Saito, A. Itoh, K. Oshima, and H. Nozaki, Tetrahedron Lett. 1979, 3519.

[42/84]

¹⁾ Department of Chemistry, Mercer University, Macon, Georgia, 31207, USA.

²⁾ ^{2a} H. M. R. Hoffmann and R. Henning, Helv. Chim. Acta **66**, 828 (1983). - ^{2b} J. Rabe and H. M. R. Hoffmann, Angew. Chem. **95**, 796 (1983); Angew. Chem., Int. Ed. Engl. **22**, 796 (1983).

³⁾ H. M. R. Hoffmann, K. E. Clemens, and R. H. Smithers, J. Am. Chem. Soc. 94, 3940 (1972).

⁴⁾ Cf. R. J. Giguere, D. I. Rawson, and H. M. R. Hoffmann, Synthesis 1978, 902.

⁶⁾ Cf. also H. M. R. Hoffmann and H. Vathke, Chem. Ber. 113, 3416 (1980).